Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Plan of Proton Irradiation Facility at J-PARC and possibilities of application to nuclear data research

Maekawa, Fujio

JAEA-Conf 2022-001, p.7 - 13, 2022/11

The partitioning and transmutation (P-T) technology has promising potential for volume reduction and mitigation of degree of harmfulness of high-level radioactive waste. JAEA is developing the P-T technology combined with accelerator driven systems (ADS). One of critical issues affecting the feasibility of ADS is the proton beam window (PBW) which functions as a boundary between the accelerator and the sub-critical reactor core. The PBW is damaged by a high-intensity proton beam and spallation neutrons produced in the target, and also by flowing high-temperature liquid lead bismuth eutectic alloy which is corrosive to steel materials. To study the materials damage under the ADS environment, J-PARC is proposing a plan of proton irradiation facility which equips with a liquid lead-bismuth spallation target bombarded by a 400 MeV - 250 kW proton beam. The facility is also open for versatile purposes such as soft error testing of semi-conductor devises, RI production, materials irradiation for fission and fusion reactors, and so on. Application to nuclear data research with using the proton beam and spallation neutrons is also one of such versatile purposes, and we welcome unique ideas from the nuclear data community.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 2; Transmutation Experimental Facility at J-PARC

Maekawa, Fujio; Takei, Hayanori

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.206 - 210, 2022/05

In developing an accelerator-driven nuclear transmutation system (ADS), it is necessary to solve technical issues related to proton beams, such as the development of materials that can withstand high-intensity proton beams and the characterization of subcritical cores driven by proton beams. Therefore, at the high-intensity proton accelerator facility J-PARC, a transmutation experimental facility that actually conducts various tests using a high-intensity proton beam is being planned. This paper introduces the outline and future direction of the transmutation experimental facility.

Journal Articles

Concept of transmutation experimental facility

Oigawa, Hiroyuki; Sasa, Toshinobu; Kikuchi, Kenji; Nishihara, Kenji; Kurata, Yuji; Umeno, Makoto*; Tsujimoto, Kazufumi; Saito, Shigeru; Futakawa, Masatoshi; Mizumoto, Motoharu; et al.

Proceedings of 4th International Workshop on the Utilisation and Reliability of High Power Proton Accelerators, p.507 - 517, 2005/11

Under the framework of J-PARC, the Japan Atomic Energy Research Institute (JAERI) plans to construct the Transmutation Experimental Facility (TEF). The TEF consists of two facilities: the Transmutation Physics Experimental Facility (TEF-P) and the ADS Target Test Facility (TEF-T). The TEF-P is a critical facility which can accept a 600 MeV - 10 W proton beam. The TEF-T is a material irradiation facility using a 600 MeV - 200 kW proton beam, where a Pb-Bi target is installed, but neutron multiplication by nuclear fuel will not be attempted. This report describes the purposes of the facility, the present status of the conceptual design, and the expected experiments to be performed.

JAEA Reports

Minutes of the IFMIF technical meetings; May 17-20, 2005, Tokyo, Japan

IFMIF International Team

JAERI-Review 2005-027, 416 Pages, 2005/08

JAERI-Review-2005-027.pdf:48.34MB

The International Fusion Materials Irradiation Facility (IFMIF) Technical Meetings were held on May 17-20, 2005 at Japan Atomic Energy Research Institute (JAERI) Tokyo. The main objectives were (1) to review technical status of the subsystems; accelerator, target and test facilities, (2) to technically discuss interface issues between target and test facilities, (3) to review results of peer-reviews performed in the EU and Japan, (4) to harmonize design / experimental activities among the subsystems, (5) to review and discuss the Engineering Validation and Engineering Design Activity (EVEDA) tasks, and (6) to make a report of (1) - (5) to the IFMIF Executive Subcommittee. This report presents a brief summary of the Target Technical Meeting, Test Facilities Technical Meeting, Target / Test Facilities Interface Meeting, Accelerator Technical Meeting and the Technical Integration Meeting.

JAEA Reports

Minutes of the IFMIF technical meeting; December 4-5, 2003, Kyoto, Japan

IFMIF International Team

JAERI-Review 2004-008, 219 Pages, 2004/03

JAERI-Review-2004-008.pdf:35.23MB

The IFMIF Technical Meeting was held on December 4-5, 2003 at Shiran-kaikan, Kyoto University. The main objectives are (i) to finalize the Comprehensive Design Report (CDR), (ii) to discuss IFMIF cost and organization, (iii) to review technical status of major systems, transition phase activities and EVEDA plan. This report presents a brief summary of the results of the meeting. Agenda, participants list and presentation materials are attached as Appendix.

JAEA Reports

IFMIF-KEP; International Fusion Materials Irradiation Facility key element technology phase report

IFMIF International Team

JAERI-Tech 2003-005, 559 Pages, 2003/03

JAERI-Tech-2003-005.pdf:48.89MB

The International Fusion Materials Irradiation Facility (IFMIF) is an accelerator-based D-Li neutron source designed to produce an intense neutron field that will simulate the neutron environment of a D-T fusion reactor. IFMIF will provide a neutron flux equivalent to 2 MW/m$$^{2}$$, 20 dpa/y in Fe, in a volume of 500 cm$$^{3}$$ and will be used in the development and qualification of materials for fusion systems. The design activities of IFMIF are performed under an IEA collaboration which began in 1995. In 2000, a three-year Key Element Technology Phase (KEP) of IFMIF was undertaken to reduce the key technology risk factors. This KEP report describes the results of the three-year KEP activities in the major project areas of accelerator, target, test facilities and design integration.

JAEA Reports

Performance test of micro-fission chambers for in-vessel neutron monitoring of ITER

Yamauchi, Michinori*; Nishitani, Takeo; Ochiai, Kentaro; Morimoto, Yuichi*; Hori, Junichi; Ebisawa, Katsuyuki*; Kasai, Satoshi

JAERI-Tech 2002-032, 41 Pages, 2002/03

JAERI-Tech-2002-032.pdf:2.62MB

A micro-fission chamber and a dummy chamber without uranium were fabricated and the performance was tested. They are designed to be installed inside the vacuum vessel of compact ITER (ITER-FEAT) for neutron monitoring. Vacuum leak rate of the chamber, resistances between central conductor and outer sheath, and mechanical strength up to 50G acceleration were confirmed to meet design criteria. Gamma-ray sensitivity was measured with $$^{60}$$Co gamma-ray irradiation facility at JAERI Takasaki. The output signals for gamma-rays in Campbelling mode were estimated to be less than 0.1% those by neutrons at the location behind the blanket module in ITER-FEAT. Detector response for 14 MeV neutrons was investigated with the FNS facility. Excellent linearity between count rates and neutron fluxes was confirmed. According to the test for the change of surrounding materials, the sensitivity was enhanced by slow-downed neutrons, which agreed with the calculation result by MCNP-4C code. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER-FEAT.

JAEA Reports

IFMIF International Fusion Materials Irradiation Facility key element technology phase interim report

IFMIF International Team

JAERI-Tech 2002-022, 97 Pages, 2002/03

JAERI-Tech-2002-022.pdf:9.17MB

Activities of International Fusion Materials Irradiation Facility (IFMIF) have been performed under an IEA collaboration since 1995. IFMIF is an accelerator- based deuteron (D+)-lithium (Li) neutron source designed to produce an intense neutron field (2 MW/m$$^{2}$$, 20 dpa/year for Fe) in a volume of 500 cm$$^{3}$$ for testing candidate fusion materials. In 2000, a 3year Key Element technology Phase (KEP) of IFMIF was started to reduce the key technology risk factors. This interim report summarizes the KEP activities until mid 2001 in the major project work-breakdown areas of accelerator, target, test cell and design integration.

JAEA Reports

Dose conversion coefficients in the shielding design calculation for high energy proton accelerator facilities

Sakamoto, Yukio; Yamaguchi, Yasuhiro

JAERI-Tech 2001-042, 29 Pages, 2001/06

JAERI-Tech-2001-042.pdf:1.79MB

no abstracts in English

Journal Articles

Present status of industrial X ray(bremsstrahlung) technology and advantages of X rays as a food irradiation source

Takehisa, Masaaki*; Saito, Toshio*; Takahashi, Toru*; *; Tanaka, Susumu; Agematsu, Takashi; *; *

Cost-benefit Aspects of Food Irradiation Processing; IAEA-SM-328/22, p.243 - 257, 1993/00

no abstracts in English

JAEA Reports

Installation of JRR-2 neutron medical irradiation facility

Arigane, Kenji; Yamada, Tadanori; ; ;

JAERI-M 91-139, 60 Pages, 1991/09

JAERI-M-91-139.pdf:1.69MB

no abstracts in English

JAEA Reports

VHTR Fuel Irradiation Tests by the In-pile Gas Loop,OGL-1 at JMTR

; ; ; ;

JAERI-M 86-068, 17 Pages, 1986/04

JAERI-M-86-068.pdf:0.8MB

no abstracts in English

JAEA Reports

25Years' History of Co-60 Irradiation Facility in Tokai Reserch Establishment

; ; Izui, Kazuhiko;

JAERI-M 84-175, 123 Pages, 1984/10

JAERI-M-84-175.pdf:5.63MB

no abstracts in English

JAEA Reports

Oral presentation

Measurement of displacement cross section for high-energy protons and future plan for material damage using 0.4 GeV protons at J-PARC

Meigo, Shinichiro

no journal, , 

Material damage index of displacement per atom (dpa) is calculated by the particle flux and the displacement cross section. Since the experimental data of the displacement cross section was scarce, the measurements using protons were conducted, and the experimental data of protons up to 30 GeV have been obtained in J-PARC. The displacement cross section was almost constant regardless of the projectile proton energy above several GeV, which is against the expectation because the heat deposition given by the proton increases as projectile energy due to the relativistic theory. The experiment with 120 GeV protons at FNAL was conducted to obtain the data for high-energy regions. To extend the energy region, the experiment with 430-GeV protons at HiRadMat is planned for the following year. Additionally, a new beam irradiation facility plan at J-PARC with 0.4-GeV protons to study material radiation damage will be presented in this talk.

Oral presentation

Measurement of displacement cross section for high-energy protons and future plan for material damage using 0.4 GeV protons at J-PARC

Meigo, Shinichiro

no journal, , 

Material damage index of displacement per atom (dpa) is calculated by the particle flux and the displacement cross section. Since the experimental data of the displacement cross section was scarce, the measurements using protons were conducted, and the experimental data of protons up to 30 GeV have been obtained in J-PARC. The displacement cross section was almost constant regardless of the projectile proton energy above several GeV, which is against the expectation because the heat deposition given by the proton increases as projectile energy due to the relativistic theory. The experiment with 120 GeV protons at FNAL was conducted to obtain the data for high-energy regions. To extend the energy region, the experiment with 430-GeV protons at HiRadMat is planned for the following year. Additionally, a new beam irradiation facility plan at J-PARC with 0.4-GeV protons will be presented in this talk.

16 (Records 1-16 displayed on this page)
  • 1